Introdução
Para quaisquer dois conjuntos de dados que você possa encontrar, existem duas alternativas viáveis de coleta de dados que pode ser feito para descrever a interação entre os dois conjuntos.
A primeira é descrever o quanto as variáveis estão associadas. Utiliza-se para isso a correlação já ensinada, onde o tamanho do coeficiente de correlação indicada o quanto estão associadas.
A segunda é tentar estabelecer uma relação entre as duas variáveis, onde consegue-se dizer o quanto uma variável muda se diminuirmos ou aumentarmos a segunda.
Ad
Relação funcional
Como sabemos, o perímetro e o lado de um quadrado estão relacionados. A relação que os liga é perfeitamente definida e pode ser expressa por meio de uma sentença matemática:
Onde 2p é o perímetro e l é o lado.
Atribuindo-se, então, um valor qualquer a R, é possível determinar exatamente o valor de 2p.
Consideremos, agora, a relação que existe entre o peso e a estatura de um grupo de pessoas. É evidente que essa relação não é do mesmo tipo da anterior; ela é bem menos precisa. Assim, pode acontecer que a estaturas diferentes correspondam pesos iguais ou que a estaturas iguais correspondam pesos diferentes. Contudo, em média, quanto maior a estatura, maior o peso.
As relações do tipo perímetro - lado são conhecidas como relações funcionais e as do tipo peso- estatura, como relações estatísticas. As relações estatísticas podem ser representadas a partir de uma função, também chamada de regressão linear simples.
Objetivos da regressão linear simples
- Predizer valores de uma variável dependente (Y) em função de uma variável independente (X).
- Conhecer o quanto variações de X podem afetar Y.
Regressão Linear Simples
A regressão linear simples é usada para examinar a relação entre uma variável dependente e uma variável independente. Depois de realizar uma análise, as estatísticas de regressão podem ser usadas para prever a variável dependente quando a variável independente é conhecida. A regressão vai além da correlação, adicionando recursos de previsão.
As pessoas usam a regressão em um nível intuitivo todos os dias. Nos negócios, um homem bem vestido é considerado um sucesso financeiro. Uma mãe sabe que mais açúcar na dieta de seus filhos resulta em níveis mais altos de energia. A facilidade de acordar de manhã muitas vezes depende de quão tarde você foi para a cama na noite anterior. A regressão quantitativa adiciona precisão ao desenvolver uma fórmula matemática que pode ser usada para fins preditivos.
Por exemplo, um pesquisador médico pode querer usar o peso corporal (variável independente) para prever a dose mais apropriada para um novo medicamento (variável dependente). O propósito de executar a regressão é encontrar uma fórmula que se encaixe no relacionamento entre as duas variáveis. Em seguida, você pode usar essa fórmula para prever valores para a variável dependente quando apenas a variável independente for conhecida. Um médico pode prescrever a dose adequada com base no peso corporal de uma pessoa.
A linha de regressão (conhecida como a linha de mínimos quadrados) é um gráfico do valor esperado da variável dependente para todos os valores da variável independente. Tecnicamente, é a linha que ) é definida como a subida dividida pela corrida. A intersecção y (a) é o ponto no eixo y onde a linha de regressão interceptaria o eixo y. A inclinação e a intercepção y são incorporadas na equação de regressão. A interceptação é geralmente chamada de constante ou coeficiente linear e a inclinação é chamada de coeficiente angular. Como o modelo de regressão geralmente não é um preditor perfeito, há também um termo de erro na equação.
Ad
Na equação de regressão, y é sempre a variável dependente e x é sempre a variável independente. Aqui estão três maneiras equivalentes de descrever matematicamente um modelo de regressão linear:
Nós chamamos de regressão linear simples a reta que minima o erro, calculando A e B de forma que o valor esperado do erro seja zero.
Cálculo das constantes A e B
As constantes são calculadas começando por A. Similar à correlação, o confieciente angular também é calculado a partir da covariância. Sua fórmula é a seguinte:
O ângulo é a covariância dividida pela variância da variável independente. Nesse caso percebe-se que ao contrário do coeficinente angular, se mantém apenas uma variável no divisor, mantendo ainda a variância da variável dependente no modelo.
Sabendo-se A calcula-se B:
Alguns livros escrevem a fórmula direta:
Com os coeficinete angular e linear podemos finalmente formar uma reta que melhor explica a relação entre duas variáveis:
— Kommentare0
Sei der erste der kommentiert