Estatística

Aula

Medidas de associação ou relação: correlação

, editado , Comment regular icon0 comments

Continuamos estudando a relação entre duas variáveis, agora olhando para a correlação

Edit Article

Indice

  1. > Introdução
  2. > Relação funcional
  3. > Diagrama de dispersão

Introdução

Similar à covariância: quando duas variáveis estão ligadas por uma relação estatística, dizemos que existe correlação entre elas.

Relação funcional

Como sabemos, o perímetro e o lado de um quadrado estão relacionados. A relação que os liga é perfeitamente definida e pode ser expressa por meio de uma sentença matemática:

2p=4l

Onde 2p é o perímetro e l é o lado.

Atribuindo-se, então, um valor qualquer a R, é possível determinar exatamente o valor de 2p.

Ad

Consideremos, agora, a relação que existe entre o peso e a estatura de um grupo de pessoas. É evidente que essa relação não é do mesmo tipo da anterior; ela é bem menos precisa. Assim, pode acontecer que a estaturas diferentes correspondam pesos iguais ou que a estaturas iguais correspondam pesos diferentes. Contudo, em média, quanto maior a estatura, maior o peso.

As relações do tipo perímetro - lado são conhecidas como relações funcionais e as do tipo peso- estatura, como relações estatísticas.

Diagrama de dispersão

Consideremos uma amostra aleatória, formada por dez dos 98 alunos de uma classe da faculdade A e pelas notas obtidas por eles em Matemática e Estatística:

Nota de matemáticaNota de estatística
5,06,0
8,09,0
7,08,0
10,010,0
6,05,0
7,07,0
9,08,0
3,04,0
8,06,0
2,02,0

Representando, em um sistema coordenado cartesiano ortogonal, os pares ordenados (xi, y), obtemos uma nuvem de pontos que denominamos diagram a de dispersão. Esse diagrama nos fornece uma ideia grosseira, porém útil, da correlação existente que para este caso existe e é positiva.